37 research outputs found

    Enhanced connectivity in wireless mobile programmable networks

    Get PDF
    Mención Interancional en el título de doctorThe architecture of current operator infrastructures is being challenged by the non-stop growing demand of data hungry services appearing every day. While currently deployed operator networks have been able to cope with traffic demands so far, the architectures for the 5th generation of mobile networks (5G) are expected to support unprecedented traffic loads while decreasing costs associated with the network deployment and operations. Indeed, the forthcoming set of 5G standards will bring programmability and flexibility to levels never seen before. This has required introducing changes in the architecture of mobile networks, enabling different features such as the split of control and data planes, as required to support rapid programming of heterogeneous data planes. Network softwarisation is hence seen as a key enabler to cope with such network evolution, as it permits controlling all networking functions through (re)programming, thus providing higher flexibility to meet heterogeneous requirements while keeping deployment and operational costs low. A great diversity in terms of traffic patterns, multi-tenancy, heterogeneous and stringent traffic requirements is therefore expected in 5G networks. Software Defined Networking (SDN) and Network Function Virtualisation (NFV) have emerged as a basic tool-set for operators to manage their infrastructure with increased flexibility and reduced costs. As a result, new 5G services can now be envisioned and quickly programmed and provisioned in response to user and market necessities, imposing a paradigm shift in the services design. However, such flexibility requires the 5G transport network to undergo a profound transformation, evolving from a static connectivity substrate into a service-oriented infrastructure capable of accommodating the various 5G services, including Ultra-Reliable and Low Latency Communications (URLLC). Moreover, to achieve the desired flexibility and cost reduction, one promising approach is to leverage virtualisation technologies to dynamically host contents, services, and applications closer to the users so as to offload the core network and reduce the communication delay. This thesis tackles the above challengeswhicharedetailedinthefollowing. A common characteristic of the 5G servicesistheubiquityandthealmostpermanent connection that is required from the mobile network. This really imposes a challenge in thesignallingproceduresprovidedtogettrack of the users and to guarantee session continuity. The mobility management mechanisms will hence play a central role in the 5G networks because of the always-on connectivity demand. Distributed Mobility Management (DMM) helps going towards this direction, by flattening the network, hence improving its scalability,andenablinglocalaccesstotheInternet and other communication services, like mobile-edge clouds. Simultaneously, SDN opens up the possibility of running a multitude of intelligent and advanced applications for network optimisation purposes in a centralised network controller. The combination of DMM architectural principles with SDN management appears as a powerful tool for operators to cope with the management and data burden expected in 5G networks. To meet the future mobile user demand at a reduced cost, operators are also looking at solutions such as C-RAN and different functional splits to decrease the cost of deploying and maintaining cell sites. The increasing stress on mobile radio access performance in a context of declining revenues for operators is hence requiring the evolution of backhaul and fronthaul transport networks, which currently work decoupled. The heterogeneity of the nodes and transmisión technologies inter-connecting the fronthaul and backhaul segments makes the network quite complex, costly and inefficient to manage flexibly and dynamically. Indeed, the use of heterogeneous technologies forces operators to manage two physically separated networks, one for backhaul and one forfronthaul. In order to meet 5G requirements in a costeffective manner, a unified 5G transport network that unifies the data, control, and management planes is hence required. Such an integrated fronthaul/backhaul transport network, denoted as crosshaul, will hence carry both fronthaul and backhaul traffic operating over heterogeneous data plane technologies, which are software-controlled so as to adapt to the fluctuating capacity demand of the 5G air interfaces. Moreover, 5G transport networks will need to accommodate a wide spectrum of services on top of the same physical infrastructure. To that end, network slicing is seen as a suitable candidate for providing the necessary Quality of Service (QoS). Traffic differentiation is usually enforced at the border of the network in order to ensure a proper forwarding of the traffic according to its class through the backbone. With network slicing, the traffic may now traverse many slice edges where the traffic policy needs to be enforced, discriminated and ensured, according to the service and tenants needs. However, the very basic nature that makes this efficient management and operation possible in a flexible way – the logical centralisation – poses important challenges due to the lack of proper monitoring tools, suited for SDN-based architectures. In order to take timely and right decisions while operating a network, centralised intelligence applications need to be fed with a continuous stream of up-to-date network statistics. However, this is not feasible with current SDN solutions due to scalability and accuracy issues. Therefore, an adaptive telemetry system is required so as to support the diversity of 5G services and their stringent traffic requirements. The path towards 5G wireless networks alsopresentsacleartrendofcarryingoutcomputations close to end users. Indeed, pushing contents, applications, and network functios closer to end users is necessary to cope with thehugedatavolumeandlowlatencyrequired in future 5G networks. Edge and fog frameworks have emerged recently to address this challenge. Whilst the edge framework was more infrastructure-focused and more mobile operator-oriented, the fog was more pervasive and included any node (stationary or mobile), including terminal devices. By further utilising pervasive computational resources in proximity to users, edge and fog can be merged to construct a computing platform, which can also be used as a common stage for multiple radio access technologies (RATs) to share their information, hence opening a new dimension of multi-RAT integration.La arquitectura de las infraestructuras actuales de los operadores está siendo desafiada por la demanda creciente e incesante de servicios con un elevado consumo de datos que aparecen todos los días. Mientras que las redes de operadores implementadas actualmente han sido capaces de lidiar con las demandas de tráfico hasta ahora, se espera que las arquitecturas de la quinta generación de redes móviles (5G) soporten cargas de tráfico sin precedentes a la vez que disminuyen los costes asociados a la implementación y operaciones de la red. De hecho, el próximo conjunto de estándares 5G traerá la programabilidad y flexibilidad a niveles nunca antes vistos. Esto ha requerido la introducción de cambios en la arquitectura de las redes móviles, lo que permite diferentes funciones, como la división de los planos de control y de datos, según sea necesario para soportar una programación rápida de planos de datos heterogéneos. La softwarisación de red se considera una herramienta clave para hacer frente a dicha evolución de red, ya que proporciona la capacidad de controlar todas las funciones de red mediante (re)programación, proporcionando así una mayor flexibilidad para cumplir requisitos heterogéneos mientras se mantienen bajos los costes operativos y de implementación. Por lo tanto, se espera una gran diversidad en términos de patrones de tráfico, multi-tenancy, requisitos de tráfico heterogéneos y estrictos en las redes 5G. Software Defined Networking (SDN) y Network Function Virtualisation (NFV) se han convertido en un conjunto de herramientas básicas para que los operadores administren su infraestructura con mayor flexibilidad y menores costes. Como resultado, los nuevos servicios 5G ahora pueden planificarse, programarse y aprovisionarse rápidamente en respuesta a las necesidades de los usuarios y del mercado, imponiendo un cambio de paradigma en el diseño de los servicios. Sin embargo, dicha flexibilidad requiere que la red de transporte 5G experimente una transformación profunda, que evoluciona de un sustrato de conectividad estática a una infraestructura orientada a servicios capaz de acomodar los diversos servicios 5G, incluso Ultra-Reliable and Low Latency Communications (URLLC). Además, para lograr la flexibilidad y la reducción de costes deseadas, un enfoque prometedores aprovechar las tecnologías de virtualización para alojar dinámicamente los contenidos, servicios y aplicaciones más cerca de los usuarios para descargar la red central y reducir la latencia. Esta tesis aborda los desafíos anteriores que se detallan a continuación. Una característica común de los servicios 5G es la ubicuidad y la conexión casi permanente que se requiere para la red móvil. Esto impone un desafío en los procedimientos de señalización proporcionados para hacer un seguimiento de los usuarios y garantizar la continuidad de la sesión. Por lo tanto, los mecanismos de gestión de la movilidad desempeñarán un papel central en las redes 5G debido a la demanda de conectividad siempre activa. Distributed Mobility Management (DMM) ayuda a ir en esta dirección, al aplanar la red, lo que mejora su escalabilidad y permite el acceso local a Internet y a otros servicios de comunicaciones, como recursos en “nubes” situadas en el borde de la red móvil. Al mismo tiempo, SDN abre la posibilidad de ejecutar una multitud de aplicaciones inteligentes y avanzadas para optimizar la red en un controlador de red centralizado. La combinación de los principios arquitectónicos DMM con SDN aparece como una poderosa herramienta para que los operadores puedan hacer frente a la carga de administración y datos que se espera en las redes 5G. Para satisfacer la demanda futura de usuarios móviles a un coste reducido, los operadores también están buscando soluciones tales como C-RAN y diferentes divisiones funcionales para disminuir el coste de implementación y mantenimiento de emplazamientos celulares. El creciente estrés en el rendimiento del acceso a la radio móvil en un contexto de menores ingresos para los operadores requiere, por lo tanto, la evolución de las redes de transporte de backhaul y fronthaul, que actualmente funcionan disociadas. La heterogeneidad de los nodos y las tecnologías de transmisión que interconectan los segmentos de fronthaul y backhaul hacen que la red sea bastante compleja, costosa e ineficiente para gestionar de manera flexible y dinámica. De hecho, el uso de tecnologías heterogéneas obliga a los operadores a gestionar dos redes separadas físicamente, una para la red de backhaul y otra para el fronthaul. Para cumplir con los requisitos de 5G de manera rentable, se requiere una red de transporte única 5G que unifique los planos de control, datos y de gestión. Dicha red de transporte fronthaul/backhaul integrada, denominada “crosshaul”, transportará tráfico de fronthaul y backhaul operando sobre tecnologías heterogéneas de plano de datos, que están controladas por software para adaptarse a la demanda de capacidad fluctuante de las interfaces radio 5G. Además, las redes de transporte 5G necesitarán acomodar un amplio espectro de servicios sobre la misma infraestructura física y el network slicing se considera un candidato adecuado para proporcionar la calidad de servicio necesario. La diferenciación del tráfico generalmente se aplica en el borde de la red para garantizar un reenvío adecuado del tráfico según su clase a través de la red troncal. Con el networkslicing, el tráfico ahora puede atravesar muchos fronteras entre “network slices” donde la política de tráfico debe aplicarse, discriminarse y garantizarse, de acuerdo con las necesidades del servicio y de los usuarios. Sin embargo, el principio básico que hace posible esta gestión y operación eficientes de forma flexible – la centralización lógica – plantea importantes desafíos debido a la falta de herramientas de supervisión necesarias para las arquitecturas basadas en SDN. Para tomar decisiones oportunas y correctas mientras se opera una red, las aplicaciones de inteligencia centralizada necesitan alimentarse con un flujo continuo de estadísticas de red actualizadas. Sin embargo, esto no es factible con las soluciones SDN actuales debido a problemas de escalabilidad y falta de precisión. Por lo tanto, se requiere un sistema de telemetría adaptable para respaldar la diversidad de los servicios 5G y sus estrictos requisitos de tráfico. El camino hacia las redes inalámbricas 5G también presenta una tendencia clara de realizar acciones cerca de los usuarios finales. De hecho, acercar los contenidos, las aplicaciones y las funciones de red a los usuarios finales es necesario para hacer frente al enorme volumen de datos y la baja latencia requerida en las futuras redes 5G. Los paradigmas de “edge” y “fog” han surgido recientemente para abordar este desafío. Mientras que el edge está más centrado en la infraestructura y más orientado al operador móvil, el fog es más ubicuo e incluye cualquier nodo (fijo o móvil), incluidos los dispositivos finales. Al utilizar recursos de computación de propósito general en las proximidades de los usuarios, el edge y el fog pueden combinarse para construir una plataforma de computación, que también se puede utilizar para compartir información entre múltiples tecnologías de acceso radio (RAT) y, por lo tanto, abre una nueva dimensión de la integración multi-RAT.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Carla Fabiana Chiasserini.- Secretario: Vincenzo Mancuso.- Vocal: Diego Rafael López Garcí

    Distributed Mobility Management for Future 5G Networks: Overview and Analysis of Existing Approaches

    Get PDF
    The ever-increasing demand of mobile Internet traffic is pushing operators to look for solutions to increase the available bandwidth per user and per unit of area. At the same time, they need to reduce the load in the core network at a reasonable cost in their future 5G deployments. Today's trend points to the deployment of extremely dense networks in order to provide ubiquitous connectivity at high data rates. However, this is hard to couple with the current mobile networks' architecture, which is heavily centralized, posing difficult challenges when coping with the foreseen explosion of mobile data. Additionally, future 5G networks will exhibit disparate types of services, posing different connectivity requirements. Distributed mobility management is emerging as a valid framework to design future mobile network architectures, taking into account the requirements for large traffic in the core and the rise of extremely dense wireless access networks. In this article, we discuss the adoption of a distributed mobility management approach for mobile networks, and analyze the operation of the main existing solutions proposed so far, including a first practical evaluation based on experiments with real Linux-based prototype implementations.The research leading to these results has received funding from the European Community's Seventh Framework Program FP7/2007-2013 under grant agreement 317941-project iJOIN. The European Union and its agencies are not liable or otherwise responsible for the con tents of this document; its content reflects the view of its authors only.Publicad

    Distributed mobility management solutions for next mobile network architectures

    Get PDF
    The architecture of current operator infrastructures is being challenged by the non-stopping growing demand of data hungry services appearing every day. While currently deployed operator networks have been able to cope with traffic demands so far, the architectures for the 5th generation of mobile networks (5G) are expected to support unprecedented traffic loads while decreasing costs associated to the network deployment and operations. Distributed Mobility Management (DMM) helps going into this direction, by flattening the network, hence improving its scalability, and enabling local access to the Internet and other communication services, like mobile-edge clouds. Initial proposals have been based on extending existing IP mobility protocols, such as Mobile IPv6 and Proxy Mobile IPv6, but these need to further evolve to comply with the requirements of future networks, which include, among others, higher flexibility. Software Defined Networking (SDN) appears as a powerful tool for operators looking forward to increased flexibility and reduced costs. In this article, we first propose a Proxy Mobile IPv6 based DMM solution which serves as a baseline for exploring the evolution of DMM towards SDN, including the identification of DMM design principles and challenges. Based on this investigation, we propose a SDN-based DMM solution which is evaluated against our baseline from analytic and experimental viewpoints.This work has been funded by the European Union’s Horizon 2020 programme under the grant agreement no. 671598 “5GCrosshaul: the 5G integrated fronthaul/backhaul”

    Managing the far-Edge: are today's centralized solutions a good fit

    Get PDF
    Edge computing has established itself as the foundation for next-generation mobile networks, IT infrastructure, and industrial systems thanks to promised low network latency, computation offloading, and data locality. These properties empower key use-cases like Industry 4.0, Vehicular Communication and Internet of Things. Nowadays implementation of Edge computing is based on extensions to available Cloud computing software tools. While this approach accelerates adoption, it hinders the deployment of the aforementioned use-cases that requires an infrastructure largely more decentralized than Cloud data centers, notably in the far-Edge of the network. In this context, this work aims at: (i) to analyze the differences between Cloud and Edge infrastructures, (ii) to analyze the architecture adopted by the most prominent open-source Edge computing solutions, and (iii) to experimentally evaluate those solutions in terms of scalability and service instantiation time in a medium-size far Edge system. Results show that mainstream Edge solutions require powerful centralized controllers and always-on connectivity, making them unsuitable for highly decentralized scenarios in the far-Edge where stable and high-bandwidth links are not ubiquitous.This work has been partially funded by the H2020 collaborative Europe/Taiwan research project 5G-DIVE (grant no. 589881) and by the H2020 European collaborative research project DAEMON (grant no. 101017109)

    5GEN: A tool to generate 5G infrastructure graphs

    Get PDF
    This paper has been presented at : 2019 IEEE Conference on Standards for Communications and NetworkingOngoing research on 5G is looking on software platforms to evaluate new developments on 5G networks. Some 5G hardware is now starting to be available, but it is scarce and very limited, which makes validation and performance evaluation of 5G quite challenging. Simulation is the tool of choice for most of the cases, but this requires creating large descriptor files representing a 5G network. This brings forward the need for tools that facilitate the generation of 5G networks' topologies. In this paper we present 5GEN, a tool that automatically creates graphs representing 5G networks. With 5GEN, a researcher can just define the number of resources, and 5GEN will generate the nodes and edges that interconnect them across the infrastructure. The tool has been successfully used to test several 5G network scenarios within the EU 5G-CORAL project.Work was partially funded by EU H2020 5G-TRANSFORMER Project (grant no. 761536) and EU H2020 5G-CORAL Project (grant no. 761586).Work was partially funded by EU H2020 5G-TRANSFORMER Project (grant no. 761536) and EU H2020 5G-CORAL Project (grant no. 761586)

    Understanding QoS applicability in 5G transport networks

    Get PDF
    5G transport networks will need to accommodate a wide spectrum of services on top of the same physical infrastructure and network slicing is seen as a suitable candidate for providing the necessary quality of service (QoS). Traffic differentiation is usually enforced at the border of the network in order to ensure a proper forwarding of the traffic according to its class through the backbone. With network slicing, the traffic may now traverse many slice edges where the traffic policy needs to be enforced, discriminated and ensured, according to the service and tenants needs. The goal of this article is hence to analyze the impact of different QoS policies in case of having multiple network slices carrying fixed and mobile traffic.This work has been partially funded by the EU H2020 5GTransformer Project (grant no. 761536) and the H2020 collaborative Europe/Taiwan research project 5G-CORAL (grant no. 761586)

    Software-defined mobility management: Architecture proposal and future directions

    Get PDF
    A common characteristic for all of the uses in 5G wireless networks is the ubiquity and the almost permanent connection to the mobile network to get access to external applications. This really imposes a challenge in the signaling procedures provided to get track of the user and to guarantee session continuity. The mobility management mechanisms will play a central role in the 5G networks because of the always-on connectivity demand. This article presents a software defined approach to mobility management procedures addressing the present challenges and proposing some future directions for a more efficient service provision and a better usage of the network resources. The feasibility of such a Software-Defined Mobility Management architecture is assessed in a specific test-bed

    Applicability of SDN and NFV techniques for a virtualization-based roaming solution

    Get PDF
    Part of a collection: Software-Defined Networking (SDN) and Network Function Virtualization (NFV) for a Hyperconnected World: Challenges, Applications, and Major Advancements.Network programming and virtualization are technological trends being incrementally introduced in operational networks. This creates an environment where new innovations can be incorporated, facilitating also the evolution of the way in which existing services are delivered. These changes, however, are not only motivated by technical reasons. External factors, such as regulation, can trigger the evolution of existing services. Roaming services are an example of this two-sided situation. From the technical perspective, roaming users typically experiment worst performance than local users on the same network, since their traffic is usually routed through the home network. Besides that, due to recent regulation changes introduced in Europe for roaming services, known as Roam Like at Home (RLAH), roaming is charged at domestic prices. Both aspects are severely challenging the current mode of operation of roaming services as delivered nowadays by mobile operators. This paper presents the design of a virtualized based roaming solution, including an experimental assessment, as well as an economic insight of the concept.This work has been supported by the European Community through the 5GEx project within the H2020 programme (Grant agreement no. 671636). Special thanks to the teams of Deutsche Telekom and BISDN involved in H2020 EU 5GEx project that were part of the design and execution of this use case

    Adaptive Telemetry for Software-Defined Mobile Networks

    Get PDF
    The forthcoming set of 5G standards will bring programmability and flexibility to levels never seen before. This has required introducing changes in the architecture of mobile networks, enabling different features such as the split of control and data planes, as required to support the rapid programming of heterogeneous data planes. Software Defined Networking (SDN) has emerged as a basic toolset for operators to manage their infrastructure, as it opens up the possibility of running a multitude of intelligent and advanced applications for network optimization purposes in a centralized network controller. However, the very basic nature that makes possible this efficient management and operation in a flexible way-the logical centralization-poses important challenges due to the lack of proper monitoring tools, suited for SDN-based architectures. In order to take timely and right decisions while operat-ing a network, centralized intelligence applications need to be fed with a continuous stream of up-to-date network statistics. However, this is not feasible with current SDN solutions due to scalability and accuracy issues. This article first analyzes the monitoring issues in current SDN solutions and then proposes a telemetry frame-work for software defined mobile networks capable of adapting to the various 5G services. Finally, it presents an experimental validation that shows the benefits of the proposed solution at alleviating the load on the control and data planes, improv-ing the reactiveness to network events, and providing better accuracy for network measurements.This work has been partially funded by the H2020 Framework Programme Europe/Taiwan joint action 5G-DIVE Project (Grant No. 859881), by the H2020 Framework Programme EU 5G-Transformer Project (Grant No. 761586), and by the H2020 Framework Programme EU 5Growth Project (Grant No. 856709)

    Edge Robotics: are we ready? An experimental evaluation of current vision and future directions

    Get PDF
    Cloud-based robotics systems leverage a wide range of Information Technologies (IT) to offer tangible benefits like cost reduction, powerful computational capabilities, data offloading, etc. However, the centralized nature of cloud computing is not well-suited for a multitude of Operational Technologies (OT) nowadays used in robotics systems that require strict real-time guarantees and security. Edge computing and fog computing are complementary approaches that aim at mitigating some of these challenges by providing computing capabilities closer to the users. The goal of this work is hence threefold: i) to analyze the current edge computing and fog computing landscape in the context of robotics systems, ii) to experimentally evaluate an end-to-end robotics system based on solutions proposed in the literature, and iii) to experimentally identify current benefits and open challenges of edge computing and fog computing. Results show that, in the case of an exemplary delivery application comprising two mobile robots, the robot coordination and range can be improved by consuming real-time radio information available at the edge. However, our evaluation highlights that the existing software, wireless and virtualization technologies still require substantial evolution to fully support edge-based robotics systems.This work has been partially funded by European Union’s Horizon 2020 research and innovation programme under grant agreement No 101015956, and the Spanish Ministry of Economic Affairs and Digital Transformation and the European Union- NextGenerationEU through the UNICO 5G I+ D 6G-EDGEDT and 6G-DATADRIVE
    corecore